Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Fluoro-N-o-tolylbenzamide

Aamer Saeed,^a* Rasheed Ahmad Khera,^a Shahid Ameen,^a lim Simpson^b and Roderick G. Stanlev^b

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

Correspondence e-mail: aamersaeed@yahoo.com

Received 15 December 2008; accepted 18 December 2008

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.037; wR factor = 0.108; data-to-parameter ratio = 7.3.

In the title compound, $C_{14}H_{12}FNO$, the ortho-F atom and corresponding H atom on the fluorobenzene ring are disordered over two positions with occupancies of 0.856(4)and 0.144 (4). The amide unit is planar with a maximum deviation of 0.0057 (16) Å and the amide plane makes dihedral angles of 38.27 (11)° with the fluorobenzene ring plane and $37.53 (10)^{\circ}$ with the tolyl ring. The two benzene rings are inclined at an angle of $4.17 (15)^{\circ}$. In the crystal structure, chains form along b through N-H···O hydrogen bonds augmented by $C-H\cdots\pi$ interactions. Additional intermolecular $C-H\cdots O$ and $C-H\cdots F$ hydrogen bonds further stabilize the structure, forming layers in the ac plane.

Related literature

For related structures, see: Chopra & Guru Row (2008); Donnelly et al. (2008); Hou et al. (2004); Saeed et al. (2008). For reference structural data, see: Allen et al. (1987).

Experimental

Crystal data

C14H12FNO $M_r = 229.25$ Monoclinic, $P2_1/n$ a = 10.749 (4) Å b = 4.8245 (17) Åc = 21.580(7) Å $\beta = 93.820 \ (19)^{\circ}$

V = 1116.6 (7) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 93 (2) K $0.25 \times 0.15 \times 0.05 \text{ mm}$ Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2006)
  T_{\rm min} = 0.779, T_{\rm max} = 0.995
```

Refinement

R

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms tr
$wR(F^2) = 0.108$	indepen
S = 1.06	refineme
1228 reflections	$\Delta \rho_{\text{max}} = 0.$
169 parameters	$\Delta \rho_{\min} = -$

7896 measured reflections 1228 independent reflections 925 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.067$ $\theta_{\rm max} = 21.3^{\circ}$

eated by a mixture of dent and constrained ent .19 e Å⁻³ -0.21 e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N1 - HN1 \cdots O1^{i} \\ C6 - H6 \cdots F1'^{ii} \\ C12 - H12 \cdots O1^{iii} \\ C12 - H12 \cdots F1'^{iii} \\ C14 - H14C \cdots Cg1^{i} \end{array}$	0.85 (3) 0.95 0.95 0.95 0.95 0.98	2.08 (3) 2.60 2.63 2.40 2.98	2.887 (3) 3.219 (11) 3.434 (3) 3.287 (11) 3.702 (3)	158 (2) 123 143 154 131
-				

Symmetry codes: (i) x, y - 1, z; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y + 3, -z. Cg1 is the centroid of the C8-C13 benzene ring.

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

We thank the University of Otago for purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2882).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54-67.
- Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335-0340
- Hou, Z.-K., Ao, C.-C., Song, J. & Chen, L.-G. (2004). Acta Cryst. E60, o1957-01958
- Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2187.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, o201 [doi:10.1107/S1600536808043122]

2-Fluoro-N-o-tolylbenzamide

A. Saeed, R. A. Khera, S. Ameen, J. Simpson and R. G. Stanley

Comment

As part of our ongoing work on the structure of benzanilides and related compounds (Saeed *et al.*, 2008), we report here the structure of the title 2-fluorobenzamide derivative, (I), Fig 1. The C2—C1—O1—N1—C8 unit is almost planar with a maximum deviation of 0.0057 (16)Å for N1. This plane makes dihedral angles of $38.27 (11)^\circ$ with the fluorobenzene ring plane and $37.53 (10)^\circ$ with the tolyl ring. The two benzene rings are inclined at an angle of $4.17 (15)^\circ$ giving the molecule a stepped structure. Bond distances in the molecule are not unusual (Allen *et al.*, 1987) and agree well with those reported previously (see for example Chopra & Guru Row, 2008; Donnelly *et al.*, 2008; Hou *et al.*, 2004, Saeed *et al.*, 2008).

In the crystal structure, chains form along *b* through N—H···O hydrogen bonds augmented by C—H··· π interactions involving the methyl group and the tolyl rings (Table 1, Fig. 2). Additional intermolecular C—H···O and C—H···F hydrogen bonds further stabilize the structure forming layers in the *ac* plane, that stack down the *b* axis (Fig. 3).

Experimental

2-Fluorobenzoyl chloride (5.4 mmol) in CHCl₃ was treated with 2-methylaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl₃ and washed consecutively with 1 *M* aqueous HCl and saturated aq NaHCO₃. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl₃ afforded (I) as colourless needles in an81% yield: Anal. calcd. for C₁₄H₁₂FNO: C 73.35, H 5.28, N 6.11%; found: C 73.30, H 5.32, N 6.09%

Refinement

The H atom bound to N1 was located in a difference electron density map and refined freely with an isotropic displacement parameter. All other H-atoms were refined using a riding model with C—H = 0.95 Å, U_{iso} = 1.2 U_{eq} (C) for aromatic and 0.98 Å, U_{iso} = 1.5 U_{eq} (C) for methyl H atoms. The *ortho*-F atom and corresponding H atom on the fluorobenzene ring are disordered over two positions with occupancies 0.856 (4) and 0.144 (4). Crystals were very small and weakly diffracting, with no significant data obtained beyond θ = 21°

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. For clarity atoms of the minor disorder component have been omitted.

Fig. 2. Chains formed along *a* by N—H···O hydrogen bonds (dashed lines) and C—H··· π interactions (dotted lines). Spheres represent the centroids of C8···C13 benzene rings.

Fig. 3. Crystal packing of (I) viewed down the b axis with hydrogen bonds drawn as dashed lines.

2-Fluoro-N-o-tolylbenzamide

Crystal data	
C ₁₄ H ₁₂ FNO	$F_{000} = 480$
$M_r = 229.25$	$D_{\rm x} = 1.364 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1374 reflections
a = 10.749 (4) Å	$\theta = 3.3 - 21.2^{\circ}$
<i>b</i> = 4.8245 (17) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 21.580 (7) Å	T = 93 (2) K
$\beta = 93.820 \ (19)^{\circ}$	Rectangular plate, colourless
V = 1116.6 (7) Å ³	$0.25\times0.15\times0.05~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	1228 independent reflections
Radiation source: fine-focus sealed tube	925 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.067$
T = 93(2) K	$\theta_{\text{max}} = 21.3^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: Multi-scan (SADABS; Bruker, 2006)	$h = -10 \rightarrow 10$
$T_{\min} = 0.779, \ T_{\max} = 0.995$	$k = -4 \rightarrow 4$
7896 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent and constrained refinement

$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_o^2) + (0.0633P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
1228 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
169 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and i	sotropic	c or e	quivalent	isotror	vic dis	nlacement	narameters	$(Å^2$)
1 / 40000000	cutonne	coordinates		sonopie	01 00	100000000000000000000000000000000000000	1501101		pracement	parameters	(**)	/

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.5852 (2)	1.1330 (5)	0.13062 (12)	0.0203 (7)	
01	0.57188 (16)	1.3797 (3)	0.11721 (8)	0.0291 (6)	
C2	0.5376 (2)	1.0250 (4)	0.18985 (11)	0.0177 (7)	
C7	0.4271 (2)	1.1328 (5)	0.20975 (13)	0.0229 (7)	
H7	0.3828	1.2677	0.1850	0.027*	0.856 (4)
F1	0.71053 (15)	0.7317 (3)	0.21278 (8)	0.0296 (7)	0.856 (4)
C3	0.5996 (2)	0.8335 (5)	0.22854 (13)	0.0242 (7)	
H3	0.6757	0.7577	0.2162	0.029*	0.144 (4)
F1'	0.3678 (10)	1.321 (2)	0.1771 (6)	0.046 (4)	0.144 (4)
C4	0.5566 (3)	0.7481 (5)	0.28378 (13)	0.0302 (7)	
H4	0.6022	0.6179	0.3093	0.036*	
C5	0.4450 (3)	0.8563 (5)	0.30152 (13)	0.0284 (7)	
Н5	0.4126	0.7979	0.3393	0.034*	
C6	0.3806 (2)	1.0486 (5)	0.26455 (12)	0.0270 (7)	
Н6	0.3043	1.1228	0.2769	0.032*	
N1	0.64105 (18)	0.9476 (5)	0.09499 (10)	0.0197 (6)	
HN1	0.639 (2)	0.781 (5)	0.1077 (12)	0.028 (8)*	
C8	0.6910 (2)	1.0053 (4)	0.03731 (11)	0.0173 (7)	
C9	0.8010 (2)	0.8696 (4)	0.02298 (12)	0.0186 (7)	
C14	0.8660 (2)	0.6685 (5)	0.06812 (12)	0.0243 (7)	
H14A	0.8801	0.7574	0.1088	0.036*	
H14B	0.9463	0.6140	0.0528	0.036*	
H14C	0.8138	0.5037	0.0720	0.036*	
C10	0.8481 (2)	0.9264 (5)	-0.03388 (12)	0.0242 (7)	
H10	0.9220	0.8353	-0.0446	0.029*	

supplementary materials

C11	0.7908 (2)	1.1116 (5)	-0.07566 (12)	0.0264 (7)
H11	0.8257	1.1480	-0.1141	0.032*
C12	0.6822 (2)	1.2436 (5)	-0.06095 (13)	0.0235 (7)
H12	0.6421	1.3704	-0.0894	0.028*
C13	0.6326 (2)	1.1905 (5)	-0.00504 (12)	0.0205 (7)
H13	0.5579	1.2807	0.0049	0.025*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0195 (15)	0.0157 (16)	0.0256 (18)	-0.0019 (12)	0.0003 (13)	0.0007 (13)
01	0.0434 (12)	0.0128 (11)	0.0326 (12)	0.0013 (8)	0.0142 (9)	0.0032 (8)
C2	0.0229 (15)	0.0104 (13)	0.0197 (16)	-0.0033 (12)	0.0005 (13)	-0.0007 (11)
C7	0.0246 (16)	0.0188 (15)	0.0253 (18)	-0.0012 (13)	0.0015 (14)	-0.0003 (12)
F1	0.0306 (11)	0.0303 (11)	0.0279 (12)	0.0111 (9)	0.0007 (9)	0.0041 (8)
C3	0.0245 (17)	0.0213 (16)	0.0268 (19)	-0.0004 (12)	0.0028 (14)	-0.0024 (12)
F1'	0.050 (8)	0.044 (8)	0.046 (9)	0.018 (6)	0.011 (6)	0.015 (6)
C4	0.0394 (18)	0.0271 (16)	0.0236 (19)	-0.0024 (14)	-0.0015 (15)	0.0038 (13)
C5	0.0409 (18)	0.0276 (16)	0.0170 (17)	-0.0117 (14)	0.0051 (14)	0.0006 (12)
C6	0.0278 (16)	0.0292 (16)	0.0246 (18)	-0.0018 (13)	0.0060 (13)	-0.0021 (13)
N1	0.0258 (13)	0.0101 (13)	0.0239 (15)	0.0023 (11)	0.0060 (11)	0.0022 (11)
C8	0.0203 (15)	0.0113 (14)	0.0206 (17)	-0.0051 (11)	0.0028 (13)	-0.0002 (11)
C9	0.0212 (15)	0.0125 (14)	0.0216 (17)	-0.0031 (11)	-0.0008 (13)	-0.0027 (11)
C14	0.0244 (15)	0.0227 (15)	0.0259 (18)	0.0031 (12)	0.0022 (13)	-0.0016 (12)
C10	0.0234 (15)	0.0241 (15)	0.0255 (18)	0.0002 (13)	0.0040 (13)	-0.0049 (13)
C11	0.0305 (17)	0.0291 (16)	0.0199 (17)	-0.0047 (13)	0.0043 (14)	-0.0017 (13)
C12	0.0295 (16)	0.0188 (15)	0.0216 (18)	-0.0042 (13)	-0.0033 (13)	0.0034 (12)
C13	0.0173 (14)	0.0163 (14)	0.0278 (19)	-0.0020 (11)	-0.0007 (13)	-0.0003 (12)

Geometric parameters (Å, °)

C101	1.231 (3)	N1—C8	1.416 (3)
C1—N1	1.347 (3)	N1—HN1	0.85 (3)
C1—C2	1.501 (3)	C8—C13	1.397 (3)
C2—C3	1.386 (3)	C8—C9	1.404 (3)
C2—C7	1.390 (3)	C9—C10	1.385 (4)
C7—F1'	1.292 (10)	C9—C14	1.512 (3)
С7—С6	1.375 (4)	C14—H14A	0.9800
С7—Н7	0.9500	C14—H14B	0.9800
F1—C3	1.354 (3)	C14—H14C	0.9800
C3—C4	1.370 (4)	C10—C11	1.384 (3)
С3—Н3	0.9500	C10—H10	0.9500
C4—C5	1.385 (4)	C11—C12	1.385 (4)
C4—H4	0.9500	C11—H11	0.9500
C5—C6	1.379 (4)	C12—C13	1.375 (4)
С5—Н5	0.9500	C12—H12	0.9500
С6—Н6	0.9500	C13—H13	0.9500
01—C1—N1	123.9 (2)	C13—C8—N1	121.4 (2)

O1—C1—C2	119.7 (2)	C9—C8—N1	118.4 (2)
N1—C1—C2	116.5 (2)	C13—C8—C14 ⁱ	76.61 (13)
C3—C2—C7	116.7 (2)	C9—C8—C14 ⁱ	90.97 (14)
C3—C2—C1	124.5 (2)	N1	103.13 (14)
C7—C2—C1	118.6 (2)	C10—C9—C8	117.7 (2)
F1'—C7—C6	118.8 (6)	C10—C9—C14	121.2 (2)
F1'—C7—C2	119.7 (6)	C8—C9—C14	121.1 (2)
C6—C7—C2	121.4 (2)	C9—C14—H14A	109.5
С6—С7—Н7	119.3	C9—C14—H14B	109.5
С2—С7—Н7	119.3	H14A—C14—H14B	109.5
F1—C3—C4	117.6 (2)	C9—C14—H14C	109.5
F1—C3—C2	119.1 (2)	H14A—C14—H14C	109.5
C4—C3—C2	123.2 (2)	H14B—C14—H14C	109.5
С4—С3—Н3	118.4	C11—C10—C9	122.1 (2)
С2—С3—Н3	118.4	C11-C10-H10	118.9
C3—C4—C5	118.4 (3)	С9—С10—Н10	118.9
С3—С4—Н4	120.8	C10-C11-C12	119.5 (3)
С5—С4—Н4	120.8	C10—C11—H11	120.2
C6—C5—C4	120.2 (3)	C12-C11-H11	120.2
С6—С5—Н5	119.9	C13—C12—C11	119.8 (2)
C4—C5—H5	119.9	C13—C12—H12	120.1
C5—C6—C7	120.0 (3)	C11—C12—H12	120.1
С5—С6—Н6	120.0	C12—C13—C8	120.6 (2)
С7—С6—Н6	120.0	C12—C13—C14 ⁱ	88.08 (15)
C1—N1—C8	125.5 (2)	C8—C13—C14 ⁱ	81.74 (14)
C1—N1—HN1	115.0 (18)	С12—С13—Н13	119.7
C8—N1—HN1	119.2 (18)	C8—C13—H13	119.7
C13—C8—C9	120.2 (2)	C14 ⁱ —C13—H13	100.3
O1—C1—C2—C3	-140.1 (3)	C1—N1—C8—C13	-37.4 (3)
N1—C1—C2—C3	39.8 (3)	C1—N1—C8—C9	143.2 (2)
O1—C1—C2—C7	36.3 (3)	C1—N1—C8—C14 ⁱ	44.8 (3)
N1—C1—C2—C7	-143.8 (2)	C13—C8—C9—C10	0.0 (3)
C3—C2—C7—F1'	176.9 (6)	N1—C8—C9—C10	179.4 (2)
C1—C2—C7—F1'	0.3 (7)	C14 ⁱ —C8—C9—C10	-75.1 (2)
C3—C2—C7—C6	-1.4 (3)	C13—C8—C9—C14	179.9 (2)
C1—C2—C7—C6	-178.0 (2)	N1-C8-C9-C14	-0.6 (3)
C7—C2—C3—F1	-176.9 (2)	C14 ⁱ —C8—C9—C14	104.9 (2)
C1—C2—C3—F1	-0.5 (3)	C8—C9—C10—C11	0.6 (3)
C7—C2—C3—C4	0.5 (4)	C14—C9—C10—C11	-179.4 (2)
C1—C2—C3—C4	176.9 (2)	C9—C10—C11—C12	-0.7 (4)
F1—C3—C4—C5	178.2 (2)	C10-C11-C12-C13	0.3 (4)
C2—C3—C4—C5	0.7 (4)	C11—C12—C13—C8	0.3 (3)
C3—C4—C5—C6	-1.0 (4)	C11—C12—C13—C14 ⁱ	79.5 (2)
C4—C5—C6—C7	0.2 (4)	C9—C8—C13—C12	-0.4 (3)
F1'—C7—C6—C5	-177.3 (6)	N1—C8—C13—C12	-179.8 (2)
C2—C7—C6—C5	1.0 (4)	C14 ⁱ —C8—C13—C12	82.8 (2)

supplementary materials

O1—C1—N1—C8	-0.8 (4)	C9—C8	8—C13—C14 ⁱ	-:	83.2 (2)
C2-C1-N1-C8	179.30 (19)	N1—C	8—C13—C14 ⁱ	97	7.4 (2)
Symmetry codes: (i) x , $y+1$, z .					
Hydrogen-bond geometry (Å, °)					
D—H···A	D—H	- H	H···A	$D \cdots A$	D—H···A
N1—HN1…O1 ⁱⁱ	0.85	(3) 2	2.08 (3)	2.887 (3)	158 (2)
C6—H6…F1 ^{,iii}	0.95	2	2.60	3.219 (11)	123
C12—H12····O1 ^{iv}	0.95	2	2.63	3.434 (3)	143
C12—H12…F1 ^{,iv}	0.95	2	2.40	3.287 (11)	154
C14—H14C…Cg1 ⁱⁱ	0.98	2	2.98	3.702 (3)	131
Symmetry codes: (ii) $x, y-1, z$; (iii) $-x+1/2, y-1/2, -z+1/2$; (iv) $-x+1, -y+3, -z$.					

Fig. 1

Fig. 2

